skip to main content


Search for: All records

Creators/Authors contains: "Reid, Kenneth J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In the past decade, reports such as the National Academies' "Engineering in K-12 Education: Understanding the Status and Improving the Prospects" (2009) have discussed the importance of – and challenges of – effectively incorporating engineering concepts into the K-12 curriculum. Multiple reports have echoed and further elaborated on the need to effectively and authentically introduce engineering within K-12; not just to address a perpetual shortage of engineers, but to increase technological literacy within the U.S. The NSF-funded initiative Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database curriculum was intentionally designed ‘for us all;’ in other words, the design is meant to be inclusive and to engage in an examination and exploration of ‘engineering’. The intent behind the ‘for us all’ curriculum is to emphasize the idea of thinking like an engineer, rather than simply to develop more engineers. Therefore, the focus is not on ‘how to become an engineer’ but ‘what is an engineer’ and ‘who is an engineer’. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. 
    more » « less